
902 

Acta Cryst. (1983). A39, 902-907 

The Measurement of Integrated Intensities 

BY W. GONSCHOrU~K 

Institut ffir Kristallographie der R WTH Aachen, Templergraben 55, D-5100 Aachen, 
Federal Republic of  Germany 

(Received 15 March 1983; accepted 4 July 1983) 

Abstract 

Expressions for the integrated intensities of the Laue 
and of the rotating-crystal methods are given, which 
take the spectral distribution of the incident radiation 
into account. The correlation between the integrated 
intensities of both methods is elucidated. A procedure is 
described for the measurement of integrated intensities 
on an absolute scale using radiation with a continuous 
spectral distribution superimposed by sharp (spectral) 
lines. It is shown that crystal-monochromatized radia- 
tion may also exhibit, besides sharp lines, continuous 
tails. Neglecting these tails causes errors up to 2% for 
observed integrated intensities. 

Introduction 

Measuring integrated intensities of MnF 2, TiO 2 and 
VO2 with graphite-monochromatized Ag Kct radiation 
by the rotating-crystal method, the author noticed that 
for all strong and medium strong reflections - those 
with small Bragg angles excepted - the high-angle 
background intensity was systematically larger than the 
low-angle one. Integrated intensities, measured with a 
MnF 2 crystal, were shown to be normally distributed 
and the sample variances compared with hypothetical 
Poisson variances behaved well as expected from 
statistics (Alte de Veiga, Andrade & Gonschorek, 
1982). Nevertheless, least-squares refinement led to a 
goodness-of-fit parameter far outside the range in which 
it could be accepted from a statistical point of view. 
These observations and the intention to measure 
integrated intensities on an absolute scale stimulated a 
more thorough examination of the definition and 
measurement of integrated intensities. 

1. Integrated reflecting power 

With the incident and scattered wave vectors k 0 and k, 
k = k 0 = 1/2, the scattering vector s is defined as 

s = k -  k 0. (1) 
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If I% and k include the angle 28, the modulus of s is s = 
2 sin 8/2. The Laue equation s = h leads, with h = 
1/d h, to the Bragg equation 2d h sin O h = 2. For s = h 
the vectors k 0 and k include the angles n/2 + O h and 
n/2 - 0 h with h. 

To define the integrated intensity, Zachariasen 
(1967) considers the incident-wave vector k o = k0(el) 
as a function of a parameter el. This parameter is so 
chosen that 1%(0) satisfies the Laue equation, i.e. 1%(0) 
makes an angle of n/2 + O h with h and has the modulus 
k0(0) = 1/2 = (2dh sin Oh) -1. It is assumed that a given 
1%(e~) is associated with the incident intensity I 0 which 
is measured in the dimension energy/(area x time). The 
wave vectors k of scattering from lattice planes (h) are 
oriented within a small solid angle and do not 
necessarily satisfy Laue's equation, so that the total 
amount of radiation energy, scattered per unit time, is 
obtained by integration of the diffracted intensity over 
an area. The ratio of the total amount of radiation 
energy of wavelength 2 = 1/ko(e~) which is scattered 
per unit time at lattice planes h to the incident intensity 
(of the same wavelength), is called the reflecting power 
Ph(e~). If e~ is varied systematically, the integrated 
reflecting power Ph is defined as 

Ph = f Ph(~) de,. (2) 

The function Ph(Cl) and, if e~ is dimensionless, also the 
quantity Ph both have the dimension of area and they 
depend upon how ~ is varied. Here the Laue method 
and the rotating-crystal method will be considered. 

Laue method 

The orientation of k0(el) relative to the crystal is 
constant, only the modulus k0(el) is varied. The 
parameter e I can be chosen as 

2- -  2h(1 + el) (3) 

with 2h = 2dh sin Oh. The angle Oh is determined by the 
angle n/2 + O h, which 1%(ei) and h make with each 
other. 
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Zachariasen (1967), on the basis of the kinematical 
theory, deduces two expressions for the integrated 
reflecting power Ph of the Laue method, both of which 
do not have the dimension of an area. Bouman (1957) 
avoids this discrepancy by redefining the incident 
intensity I0, so that this quantity in the Laue method 
has another meaning and another dimension than in the 
rotating-crystal and powder methods. 

The expression for Pa with the correct dimension and 
with unaltered meaning of I 0 is obtained, if in 
Zachariasen's derivation the parameter e~ 
(Zachariasen, 1967, p. 105, equation [3.64]) is re- 
placed by e 1 as defined in (3). This gives the integrated 
reflecting power the form 

?h ----- Qh(0h) V (4) 

with 

(_V)2 1 +flCOS220h IFh'22~ 
Qh(0h) = 1 + fl 2 sin E O h (5) 

Here v is the volume of the crystal and V that of the 
unit cell. The constants a and fl depend upon the nature 
of the incident radiation: a = 10 fm for neutrons and 
a = eE/me 2 for X-rays;  fl = 0 for unpolarized neutrons, 
fl = 1 for unpolarized X-rays and 0 < fl < 1 for most 
commonly used monochromatized X-rays. 

Rotat ing-crystal  method 

The incident wave vector k o (k 0 = 1/2) is constant 
and the crystal is rotated (this is equivalent to a 
rotation of the incident beam relative to the crystal). 
For the equatorial geometry {Z = tI) = 0; 20h = ~' in 
equation [3.78] of Zachariasen (1967)}, the expres- 
sions 

Ph=Qh(2) V, (6) 
(___VV) 2 1 +flCOS220h [Fh 1223 

Qh(2) = 1 + fl sin 20 h (7) 

are found. 
Here the angle 0 h for given k 0 = 1/2 and Ihl --- l i d  h 

is defined by sin 0 h = 2 /2d  h. Both Qh(0h) and Qh(2) 
have the dimension (length)-L 

2. Integrated intensity 

The spectral distribution o f the  incident radiation may 
be given by 

dE 
I o ( e ) -  

de 

With 

2 = 21(1 + e) 

the differential dE denotes the radiation energy with 
wavelengths between 2 = 2~(1 + e) and 2 = 
2a(1 + e + de), which crosses a unit area per unit time. 
The reference wavelength 21 can be chosen arbitrarily. 

Laue  method 

Comparing (3) and (9) e can be expressed as a 
function of e~. The integrated intensity I h with reference 
to (2) takes the form 

2h Ih = f eh(el) I°[e(e')l ~-1 del (10) 

and has the dimension energy per time. If I0[e(t~)] is 
constant within the small region of el values, for which 
Ph(tl) gives a contribution to Ph, (10) reduces to 

(2h-- 21) 2h 
Ih = Qh(Oh) v I  o (11) 

21 21 

In the experiment, because of the finite size of the 
source of radiation and of the crystal, the direction of 
k 0 and consequently the angles 0 h are variable for all h, 
say within the limits _+6. Therefore, in (11), 2 h = 
2d h sin 0 h also is variable: A2 h = 2d h cos O h 26, and 
according to (9) the corresponding e interval is A t  = 
AEa/21 = d h cos Oh 46/21. Hence the range of e values, 
which act as arguments of Io(e) in (11), depends upon 
d h cos 0 h. This disadvantage does not exist if the 
rotating-crystal method is applied. 

R otating-crystal method 

Radiations of different wavelengths do not interfere 
with each other, so that according to (6) the integrated 
intensity of the rotating-crystal method has the form 

E(2) 

I h = V f  I0(e) Qh[El(1 + e ) l d e .  (12) 
t(1) 

The limits of integration are fixed by the angular range 
(0k, 01]) through which the crystal is rotated during the 
measurement of the diffracted intensity. With (9), the 
Bragg equation yields: 

e(i) = 2d h sin 0~/21 -- 1, i = 1, 2. (13) 

Equation (12) only is valid if Io(e ) vanishes at the 
values e(1), e(2) and in their neighbourhood. If the 
spectral distribution Io(e ) has the form of a t~ function 
with I o = f Io(e ) de. (12) is replaced by 

Ih = Qh(2) vI  o. (14) 

(8) The fact that the direction of k 0 is variable has no 
influence as long as k 0 remains parallel to the equatorial 
plane. If k 0 includes an angle with that plane of, for 
example, 0.5 °, the numerical value of Qh(2), ac- 

(9) cording to Zachariasen (1967, p. 108, equation [3.78]) 
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with X = - ~  = 0.5 o, changes by 0.008%. This certainly 
can be neglected. 

Equation (2) prescribes how the observed integrated 
intensity I~ is to be deduced from the observed 
intensity profile I~(0 h + el). Theoretically, for a 
definite wavelength, the intensity profile has the form 
Ih(0h + el) = IoPh(ex) and application of (2) leads to 

e~ ~ de I 
dt. I f ,= f  lf,(Oh + e l ) d e , = f  lf,(Oh + e,) at 

o~ r, 
(15) 

3. Correlation between the Laue and the rotating- 
crystal methods 

narrow enough so that the expression Qh(it) can be 
considered as constant for each line. The ratio of the 
total amoung of radiation energy of the Ka I line to that 
of the Kaz line is called p. With the integrals A 1 and A 2, 
taken over the two lines, the ratio 

A2 Qh(it2) 
p ' -  - p - -  (18) 

A1 Qh(itl) 

and from this the ratio p is found. The integrated 
intensity according to (12), if Ion(e) = 0 is assumed, 
takes the form 

Ih = vlC Qh(itl, it2) (19) 

with 

Suppose that the spectral distribution 10(e) varies 
slowly with e, so that in the Laue method (11) can be 
applied for a certain range of values e = (ith-- it~)/it~ (in 
the Laue method itb for given dh is variable with 00! 
Then the profile I~(O) which is observed, if the crystal 
is rotated through an interval (0~, O~a ), is equivalent to 
a series of successive integrated intensities of the Laue 
method. Therefore, according to (11) the theoretical 
profile of a rotating-crystal experiment can be written 
as  

Ih(O)=Qh(O)VIo ( 2dhsin O- itl it~ 2dh sin O i t l  (16) 

With this relation, the distribution 10(e) can be 
determined from the intensity profile Ih(O) and inserted 
into (12): 

1 E(2) 

Ih - - ;d f lh (o )  Q h [ i t l ( l + e ) ] d & h  Q h ( 0 )  sin 0 (17)  

Here the variable e is replaced by it as in (9) and the 
expressions Qh(it) and Q,(O) from (7) and (5) are 
inserted. 

Finally, it is replaced by 0 with the aid of Bragg's 
equation. This yields an integral which corresponds to 
that in (15) and denotes the integrated intensity of the 
rotating-crystal method, as expected, because it was 
derived from the alternative form (12). This result will 
be used later on. 

4. The wavelength dependency of integrated intensities 
of the rotating-crystal method 

For X-rays from an X-ray tube there is the chararistic 
radiation I0C(e) and the Bremsstrahlung Ion(e) and one 
may write I0(e) = IC(e) + I0n(e). Usually the wave- 
lengths of the characteristic radiation and the lattice 
spacings d h are known with a high degree of accuracy. 
Therefore the it-dependent part of Qh(it), (7), can also 
be evaluated very accurately, if the spectral lines are 

I c = f IC(e) de (20) 

and 

Qh(itl, it2) = (1 + p)-l  [Qh(it,) + PQh(it2)]. (21) 

If Ion(e) has a form so that its contribution to the 
observed profiles It(O ) varies linearly with 0 in the 
neighbourhood of the characteristic lines, this con- 
tribution together with the diffuse background scat- 
tering can be determined and subtracted from the 
observed intensity, (15). This situation is equivalent to 
the case Ion(e) = 0 and is found if X-rays from an X-ray 
tube are used and if for the monochromatization a fl 
filter is chosen with an absorption edge far enough from 
the wavelengths of the characteristic radiation; an 
example is given in Fig. 1. The commonly used crystal 
monochromators applied for radiation from an X-ray 
tube, however, do not seem to yield profiles I~,(0) so 

I0 000 

5000- 

• i 

i 

'!i 
i 

23 0(°) 

Fig. 1. Reflection 004 of futile, Ag Ks radiation, 50 kV, 20 mA, fl 
filter: 50 ~tm palladium, Oh = 22"22 °, the coordinate numbers 
denote counts/12 s. Diffuse background scattering: 50 counts/ 
12s. 
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that the contribution of I~(e)  can simply be sub- 
tracted, as already stressed by Hope (1975_). As a 
typical example the profile of reflection 051 (inter- 
planar spacing d0~i = 0-886 A) from the monoclinic 
phase of VO 2 taken with graphite-monochromatized 
Ag Ka  radiation is shown in Fig. 2. This profile agrees 
well with what was found by Franklin (1951): 'In 
graphitic carbons ... the (001) lines, although narrow, 
are always unsymmetrical,  the intensity falling off more 
slowly on the small-angle side'. From this it is clear 

1~ (0) 

3 0 0 0  

2 0 0 0  

1000- / 

\ 
. .  . . . .  . . . . .  . . . . . .  , 

' ; 8 "  19 0 (  ° ) 

Fig. 2. Reflection 05i of monoclinic VO 2, graphite monochro- 
matized Ag Ka radiation, 55 kV, 20 mA, 0 h = 18.31 °, the 
coordinate numbers denote counts/4.8 s. Diffuse background 
scattering: 5 counts/4.8 s. The higher resolution of the two K~ 
lines of this profile compared with that in Fig .  1 mainly arises 
because there the crystal needle was parallel, here it was 
perpendicular to the equatorial plane. 

Aft 

0 . 0 5  

- 0 . 0 5  

".... 
• . .  . ~ - .  

• " . : "  . . ' "  : . . -  , " -  .'7 
. .  . 

5 1 0  1 5  2 0  8 (  ° ) 

Fig. 3. Relative differences ArI = (I~,~ -- I~,2)/I~, ~ of observed 
integrated intensities of monoclinic VO 2. The two sets of data I~a 
and I ° h,2 were measured with two different scan widths. Only the 
160 strongest integrated intensities were taken into account. 

why the high-angle background intensity is found larger 
than the low-angle one, and it is clear that in routine 
intensity measurements the observed integrated inten- 
sity for different Bragg angles comprises different 
portions of the primary intensity Io(e ). 

To obtain a quantitative measure of how much the 
observed integrated intensities I~, (15), vary with 
varying scan widths (0~, 0~), two complete data sets 
were measured with the same VO 2 crystal on a CAD-4 
diffractometer. The scan widths were chosen ac- 
cording to (0~ - 0d) = D tan O h + E, with D = 0.45 °, 
E = 1.00 ° and D = 0.1 °, E = 1.5 ° for the first and 
second data set. 'Background'  scattering was measured 
on both sides of the profiles up to 0 values 25% further 
from O h than 0d and 0~. The relative differences A r I = 
(I~, ~ - I~,2)/I~,~ of the observed integrated intensities, 
background subtracted, of the two data sets are plotted 
against 0 in Fig. 3. At 0 = 20 ° the difference amounts to 
about 1.6%. Refinements of the overall temperature 
factor B = 8n 2u z with the two data sets leads to a 
difference Au 2 = 0.00027 A 2, the ~ value from the 
second data set being the smaller one. This is of the 
same order of magnitude as the differences of the Uik 
values found for the atoms of rutile by Gonschorek 
(1982a) with two different data sets. One data set was 
measured by Shintani, Sato & Saito (1975) with 
graphite-monochromatized Ag Ka  radiation yielding 
larger Uik's, the other by Gonschorek (1982a) with 
fl-filtered Ag Ka  radiation. Apparently, the large 
goodness-of-fit parameter for MnF 2 (Alte da Veiga et 
al., 1982) is also caused mainly by this source of error. 

The same problem arises for fl-filtered radiation, if 
integrated intensities are to be determined on an 
absolute scale and if the primary intensity 

I o = f Io(e) de (22) 

directly is measured as described by Gonschorek 
(1982a). For X-rays from synchrotron radiation and 
for neutrons a variety of monochromators is in use and 
the spectral distribution Io(e ) of the radiation striking 
the crystal depends upon the monochromator.  

In the following a procedure will be described for the 
determination of that portion a -1 of I 0 which con- 
tributes to the observed integrated intensity I~ if finite 
scan intervals (0~, 0~) are chosen. 

First it is noticed that, because of the angular 
divergence of the primary beam, the limits e(1) and e(2) 
as introduced in (13) are not determined unequi- 
vocally. This question is discussed in Appendix C.* For 
the moment, with a given scan interval (0d, 0~) and 
taking (13) into account, the contribution of the 

* The discussion of the error arising from the fact that a scan 
interval (0d, 0g) does not unequivocally determine an interval 
[e(l), e(2)], as required in (12), has been deposited. See deposition 
footnote, § 6. 
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Bremsstrahlung Ion(e) to the observed integrated 
intensity is supposed to be given by 

and the ratio 

E(2) 
Ion = f Ion(e) de (23) 

E(1) 

a= Io/(I ~ + ICo) (24) 

is defined. Now the observed integrated intensity I~, 
(15), is multiplied by a and with I h from (12) the 
equation 

I0 
o J ~ -  Io n + I-----~ Ih (25) 

can be used for the determination of IF hi 2 on an 
absolute scale. The primary intensity I 0, the ratio a and 
the integrated intensity I~ experimentally are deter- 
mined, whereas the theoretical expression for I h will be 
replaced by an approximate expression, so that the 
denominator in (25) is cancelled. 

5. Determination of a 

The quantities I 0 and (Ion + I~:), as required in (24), are 
approximated by two integrals of the form 

Ip = X f I~(0) p(O) dO (26) 

with 

(1 + p) cos 0 
p(O) = (27) 

(1 +/~ cos 2 28) sin 2 0 

In (26) Ig(O) is the observed profile of a reference 
reflection. The function p(O) is equivalent to 1/Qh(2 ), if 
in (7) the wavelength 2 is replaced by 2d h sin 0 and if 
the different constants in (7) are replaced by one 
constant X. For the approximation of I 0 the integration 
in (26) is extended to values where Ig(O) vanishes, and 
the result is called /tot. For the approximation of 
(Ion + IC), the result of which is called ppea, the limits of 
integration (0~, 05) in (26) are found from the scan 
interval (0~,, 02h ,) with which the observed integrated 
intensity lg, of a reflection h' according to (15) is 
determined: 

d h sin 0 k = d h, sin 0k,, i =  1, 2. (28) 

Now a, defined in (24), is approximated by 

Ct'= ~pot/I~ed (29) 

and the constant X has no further influence. 
The relative error Aa/a = (~t - ct')/a, which must be 

reckoned with if ~t is determined via ct', is derived in 

Appendix B.* The different error sources, contributing 
to the relative error Aa/a, are discussed in Appendix 
C.f 

Examples of the determination of ~t' with three 
different reference reflections h, using Nb-filtered Mo 
Ks  radiation, are given by Gonschorek (1982b, Table 
4). The agreement of ~t' values obtained with the aid of 
these reference reflections lies within 1-3~r. 

6. Approximation of  the integrated intensity I h 

Once in (25) the ratio ~ is determined, the integrated 
intensity 

E(2) 

I h = V  f Ion(e) Qh[2,(1 + e)] de + vI c Qh(2,, 22) (30) 
t(l) 

derived from (12) for X-rays from an X-ray tube is 
considered. Here the first expression is replaced by (17) 
with Ih(O ) as that part of the reflection profile which 
corresponds to I0 n (e). For fl-filtered radiation this part is 
constant as in Fig. I, if reflections h are chosen with 
large Bragg angles 0 n. Then Qh[21(1 + e)] is replaced 
by Qh(21, 22) from (21) and (17) reduces to 

1 r.°~ 
= J Ih(O)p(O)dO. (31) I:' 

v~ 

Here 1/pl,z is the mean of 1/p(Oh) for Kel  and Ke z and 
p(O) is defined in (27). Since in (31) Ih(0) is constant, 
the integral can be exactly evaluated; this is done in 
Appendix A.:I:§ Remembering the conclusion drawn 
after (17), there is no difference between I~' from (31) 
and the first expression in (30), if for Ih(O ) = constant 
the equation 

Pl,2[ 0~ -- 0~1 = f p(O) dO (32) 

is valid. Then, with a scan interval (0~, 01]) satisfying 
(32), (25) takes the form 

a'  I~, = I 0 vQh(2 l, 2 z) (33) 

with a '  as defined in (29). From this equation, structure 
factors I F hi have been determined on an absolute scale 
by Gonschorek (1982a). 

* The derivation of the relative error ,dct/et which arises, if ct as 
defined in (24) is approximated by ct' as defined in (29), has been 
deposited. See deposition footnote, § 6. 

t A discussion of errors contributing to Aa/ct and of their 
correction has been deposited. See deposition footnote, § 6. 

$ The exact evaluation of the integral in (31) for lh(O) = constant 
has been deposited. 

§ Appendices A, B and C have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
38707 (8 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH 1 2HU, England. 
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For graphite monochromatized X-rays, In(0) corre- 
sponding to In(z) is not constant and the integral in 
(31) cannot be evaluated. In spite of this it is common 
practice to consider I o v/a' as constant and to use (33) 
for the determination of observed structure factors on a 
relative scale. The error arising by neglect of the first 
part in (30) is about 1% as was estimated from three 
reflection profiles with different Bragg angles. How- 
ever, this error scarcely varies with the Bragg angle so 
that for relative measurements the effective error 
reduces to about O. 2%. 

The error caused by considering a' as constant in 
(33) may rise to about 2% depending upon which scan 
intervals are chosen and which Bragg-angle range is 
covered during data collection. 

The final version of this article was considerably 
influenced by a referee of Acta Cryst., which kindly is 
acknowledged. Thanks are due to Professor Th. Hahn 

for his interest in this work and for giving the 
opportunity for its completion. 
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Abstract 

The Euclidean normalizers of space groups form the 
appropriate mathematical tool for several problems 
treated independently by crystallographers in the past, 
e.g. the comparison, the classification and the standard- 
ized description of crystal structures. Explicit tables are 
presented that enable the user to handle Euclidean 
normalizers in an easy way and, especially, to calculate 
all descriptions of a crystal structure compatible with a 
chosen space-group setting. The use of the tables is 
illustrated by different examples, and the role of 
Euclidean normalizers for crystal-structure determina- 
tion is discussed. 

1. Introduetlon 

Depending on the position of a representative point, 
point configurations (i.e. sets of symmetrically equiva- 

0108-7673/83/060907-09501.50 

lent points) of a given space group in general differ with 
respect to their geometrical properties. For a study of 
these properties all different cases are covered if the 
coordinates of such a reference point are varied over 
the whole range of an asymmetric unit. In most space 
groups, however, it is possible to confine the parameter 
variation to a smaller region by taking into account the 
symmetry of the pattern of symmetry elements. In 
plane group pgg, for instance, Laves (1931) derived all 
possible plane partitions into Dirichlet domains by 
considering only the range 0 < x,y < ¼ instead of the 
asymmetric unit 0 < x,y < ½ 'for reasons of 
symmetry'. Under the term 'reduced asymmetric units' 
this principle has been revived by Fischer (1968) in a 
paper on the packing of circles in a plane. Later it was 
applied in connection with sphere packings (Fischer, 
1970, 1971, 1973, 1974)and  Dirichlet partitions 
(Koch, 1972, 1973). For a classification of point 
configurations by means of symmetry, shortest dis- 
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